Enantiomeric separation of some common controlled stimulants by capillary electrophoresis with contactless conductivity detection.

نویسندگان

  • Thitirat Mantim
  • Duangjai Nacapricha
  • Prapin Wilairat
  • Peter C Hauser
چکیده

CE methods with capacitively coupled contactless conductivity detection (C(4)D) were developed for the enantiomeric separation of the following stimulants: amphetamine (AP), methamphetamine (MA), ephedrine (EP), pseudoephedrine (PE), norephedrine (NE) and norpseudoephedrine (NPE). Acetic acid (pH 2.5 and 2.8) was found to be the optimal background electrolyte for the CE-C(4)D system. The chiral selectors, carboxymethyl-β-cyclodextrin (CMBCD), heptakis(2,6-di-O-methyl)-β-cyclodextrin (DMBCD) and chiral crown ether (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (18C6H(4)), were investigated for their enantioseparation properties in the BGE. The use of either a single or a combination of two chiral selectors was chosen to obtain optimal condition of enantiomeric selectivity. Enantiomeric separation of AP and MA was achieved using the single chiral selector CMBCD and (hydroxypropyl)methyl cellulose (HPMC) as the modifier. A combination of the two chiral selectors, CMBCD and DMBCD and HPMC as the modifier, was required for enantiomeric separation of EP and PE. In addition, a combination of DMBCD and 18C6H(4) was successfully applied for the enantiomeric separation of NE and NPE. The detection limits of the enantiomers were found to be in the range of 2.3-5.7 μmol/L. Good precisions of migration time and peak area were obtained. The developed CE-C(4)D method was successfully applied to urine samples of athletes for the identification of enantiomers of the detected stimulants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contactless conductivity detector for microchip capillary electrophoresis.

A microfabricated electrophoresis chip with an integrated contactless conductivity detection system is described. The new contactless conductivity microchip detector is based on placing two planar sensing aluminum film electrodes on the outer side of a poly(methyl methacrylate) (PMMA) microchip (without contacting the solution) and measuring the impedance of the solution in the separation chann...

متن کامل

Pressure-assisted capillary electrophoresis for cation separations using a sequential injection analysis manifold and contactless conductivity detection.

Pressure assisted capillary electrophoresis in capillaries with internal diameters of 10 μm was found possible without significant penalty in terms of separation efficiency and sensitivity when using contactless conductivity detection. A sequential injection analysis manifold consisting of a syringe pump and valves was used to impose a hydrodynamic flow in the separation of some inorganic as we...

متن کامل

Contactless Conductivity Detection in Ceramic Technology for On-Chip Electrophoresis

A capacitively coupled contactless conductivity detector produced in Low Temperature Co-fired Ceramic (LTCC) technology for microchip capillary electrophoresis (CE) is reported in this work. Electrodes located outside the measurement channel are used to sense impedance variations caused by conductive ions. The application of LTCC in combination with contactless conductivity detection is very pr...

متن کامل

A chip-based capillary electrophoresis-contactless conductivity microsystem for fast measurements of low-explosive ionic components.

A miniaturized analytical system for separating and detecting inorganic explosive residues, based on the coupling of a micromachined capillary electrophoresis (CE) chip with a contactless conductivity detector is described. The low electroosmotic flow (EOF) of the poly(methylmethacrylate) (PMMA) chip material facilitates the rapid switching between analyses of cations and anions using the same ...

متن کامل

On-chip contactless four-electrode conductivity detection for capillary electrophoresis devices.

In this contribution, a capillary electrophoresis microdevice with an integrated on-chip contactless four-electrode conductivity detector is presented. A 6-cm-long, 70-microm-wide, and 20-microm-deep channel was etched in a glass substrate that was bonded to a second glass substrate in order to form a sealed channel. Four contactless electrodes (metal electrodes covered by 30-nm silicon carbide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electrophoresis

دوره 33 2  شماره 

صفحات  -

تاریخ انتشار 2012